LEMONTREE

AUTOMATION

How to work successfully with
LemonTree Components in a
build pipeline using version control

Whitepaper

LieberLieber Software

TABLE OF CONTENTS

INTRODUGTION ...ttt ettt sae e e bt e s ae e e bt e sa e e e bt e sare e bt e st e e aneesareenneeeneeanes 3
LemonTree COMPONENTSuiiiiiiiitiee ettt e et e e e et e e s e e e e s sae e e e e e s ne e e e e eanreee e e eanreeeeeennneeas 4
LemonTree AUTOMATION ... s e e e s e e e s e e 5
EXAMPLE WORKFLOW: INTEGRATION INTO ABUILD PIPELINEccocoiiiiiiieeeeee 6
Specification of LemonTree COMPONENESooii i e e 6
Dependencies of LemonTree COMPONENTS.cuiiiiiiiiieiiiiiiee e eriee e e esee e e e 7
RT=TT] 1Y/ TgTo To [T o1=T g o 1= o o 1= RS 8
Working with LemonTree Components in Version Control..........cc.ceoiiiiiiiiiiieeeceeceeeeeeeeeene 9
Creation of a temporary Working Model............eieiieiiiiieiie e 9
Export of the modified LemonTree COMPONENT.........uuiiiieieeeieiiiicirrreee e e 10
BUIId-Server PIDEIINE........oo ettt e e e 11
Automated comparison of LemonTree COMPONENTES........cccieiiiieeeiiiiiieee e erieee e 11
Merge Preview of LemonTree Components (Multi-Branch Strategy).....ccccccveeeeecceveenneennnn. 12
Integration into an overall MOAEN........ooo i 13

DIFFERENT EXPANSION STAGES OF THE EXAMPLE WORKFLOWcccocciiiiiniinieeneene 14

Variant without LemonTree Components

(entire Enterprise Architect model is versioned)...........ccocciiiiieiiee e 15
Variants with LemonTree Automation in different stages of expansioncccceeecceivvvveennnnn. 16
Level 1: Without LemonTree AUTOMALIONeeiiiiiiiiiei e 16
Stage 2: Automated creation of the working model (without build server)............cccceceee 17
Stage 3: Diff / Merge Report on the Build Serve..........ooooiiiiiiieeee e 18
Level 4: Integration into a (central) overall model ... 18

CONCLUSIOottt e e s r e e s e e s e e e s e e e e e e s e e e re e smee e reesneesneenareas 19

INTRODUCTION

Lifecycle management is an important topic in the development of cyber-physical systems. These
systems are specified, developed and verified using model-based approaches. Often, an overall
model is created that includes several subsystems or components. If the overall model is placed
under version control, all components must be managed together over their life cycle (releases,
variants, etc.).

In order to operate lifecycle management for parts of the model or individual components, the mo-
del must be split up. The resulting sub-models can be maintained individually. LemonTree Compo-
nents makes it possible to specify parts of an Enterprise Architect model as reusable components
and to separate them from the model. These components can be edited as an independent model,
versioned and fed back into the overall model.

Depending on the working method, the overall model is regularly updated and a new revision of the
components is imported. This task is taken over by LemonTree Automation, integrated in a build
server pipeline. In this way, models are integrated into familiar processes and changes remain visi-
ble and testable.

This white paper describes how LemonTree Components and LemonTree Automation are integrated
into a DevOps process to efficiently manage the lifecycle of partial models.

Introduction

LemonTree Components allows the division of a model created with Enterprise Architect into diffe-
rent sub-models or components. These can be easily distributed, reused and, if required, integrated
back into the overall model.

@

wmwm Platform

Fresh Model Versioning

Component_A Component_A
Component_B W Component_B
Component_C W Component_C
Component_D

Component _E Component_DEF

Component_F

mm Customers
Project_1 W Project_1
Project_2 Project_2

Figure 1: From overall model to model components

LemonTree components are extracted from the model by export and imported into another model by
import. This restricts the distributed editing to specific parts of the model. With LemonTree, differen-
ces in the edited components can be recognised and visualised. After adjusting the component in
a so-called working model, the changes can be imported back into the original overall model. If the
content of the components was changed on both sides (in the overall model as well as in the working
model), LemonTree enables the creation of a new, merged version of the component. If there is a
conflict between the changes, LemonTree assists in resolution and consolidation.

Introduction

The above mentioned function of LemonTree Components can be executed with the LemonTree
Addin as well as via the command line interface of LemonTree Automation.

LemonTree supports the following features:
- Export of LemonTree Components
- Import of LemonTree Components

- Merge of Enterprise Architect models (only without conflicts; in case of a conflict, LemonTree
terminates with an ExitCode)

- Compare Enterprise Architect models

- Create ,,Single File Sessions” (file that contains the diff information and can reproduce the used
LemonTree Session)

LemonTree Automation is primarily used in the context of a build server pipeline to update Lemon-
Tree Components (based on commits) or to create Diff Sessions that can be used as review artefacts.

The next chapters describe a possible workflow to integrate LemonTree Components together with
LemonTree Automation in a build server pipeline.

EXAMPLE WORKFLOW:
INTEGRATION INTO A
BUILD PIPELINE

The following workflow shows one way to work with LemonTree Components and Automation in the
context of a build pipeline. By exploiting all the possibilities of the tools, an extensive tool chain is
created. An overview of the different expansion stages is given in the chapter ,Different expansion
stages of the example workflow".

In principle, Enterprise Architect models can be managed in version control systems and thus used
in a build pipeline. However, one problem with this is that under certain circumstances a monolithic
overall model is versioned that consists of various, independent components. To solve this problem,
the model is split into LemonTree Components and each component is managed in its own version
control repository (called a Git repository in this example).

The first step in this process is the specification of LemonTree Components. This defines which
Enterprise Architect packages are combined into a logical component.

SPECIFICATION OF LEMONTREE COMPONENTS

The specification of a LemonTree Component is created via the LemonTree Addin. The packages
that are to become part of the LemonTree Component are selected. A component can optionally
be marked as ,,Read-Only*“, which makes it uneditable after import into a working model. Thus,
the component is usable but cannot be modified.

When exporting a component from the model, its
dependencies must be taken into account. These
references are recognised and displayed by Le-
monTree. Important are the outgoing references
that represent a dependency.

Figure 2: Specification of a LemonTree Component consisting of

 several EA packages

Whitepaper: Lemon Tree Automation

Example
workflow

Dependencies between components result from references in the model, such as classifier refe-

rences, relations or graphical representations.

Figure 3: Types of references for model elements

»B depends on A
B Working model
{placeholder} g @
A
B {placeholder}
Import A
Placeholders keep

the model consistent

Figure 4: Import of a Lemon Tree component with dependencies

In a model, the source and target of a
reference are always present. If a mo-
del is cut into different components,
the source and target of a reference
may be separated. This would cause
the reference to be lost, as only one
side of the reference is available in
the split model. Therefore, LemonTree
Components work with so-called pla-
ceholders: They act as substitute ele-
ments to resolve the missing end of a
reference.

Through the mechanism of placehol-
ders, a consistent model is always
created for any constellation of com-
ponents. However, certain dependen-
cies may not be desired due to model-
ling guidelines or principles, such as
circular dependencies.

Example
workflow

If a certain constellation of dependencies is not desired, it is resolved with the dependency
overview.

Figure 5: Resolving a circular dependency between LemonTree Components

In the example in Figure 5, an undesirable circular dependency between the platform component
and a project component is resolved. Behind the circular dependency is an erroneously created
generalisation relationship between a platform and a customer requirement. LemonTree allows
you to navigate to the origin of references and then resolve them in Enterprise Architect. In Figure
5, this relates to the deletion of the generalisation relationship.

Once all LemonTree Components have been specified and unwanted dependencies resolved,
the components are exported and stored in separate Git repositories.

Example
workflow

When exporting a LemonTree Component, a MPMS (Model Package Management System) file
is created. This file is based on JSON and is checked into the Git repository and managed there.
Since the MPMS file is only an extract of the component, a working model is created for editing
the component with LemonTree Automation. Unlike LemonTree Component, this is not managed
in version control.

To process a LemonTree component, a temporary working model is created into which the com-
ponent (with all dependencies) is imported using LemonTree Automation. The flow logic for the
creation of the working model as well as the provision of the referenced dependencies is handled
by a script (e.g. Powershell or Python). The script copies an empty Enterprise Architect model (as
a template) and imports the LemonTree component to be processed into it.

Figure 6: Working model for the Lemon Tree component ,, Customer A

In addition to the primary LemonTree Component, all components to which an outgoing referen-
ce exists are also imported. The aim is to create a working model without placeholders. The re-
ferenced elements are imported as read-only components to prevent them from being changed
in this working model.

The adjustment of a referenced compo-
nent must be done in the corresponding
Git repository. Subsequently, an update of
the referenced component is imported.

Since the Enterprise Architect model it-
self is only temporary and is not managed
in version control, the LemonTree com-
ponent must be exported back into the
MPMS format to finally publish it with a Git
commit and push.

Figure 7: Imported component ,, Customer A with read-only

component , Platform

Example
workflow

EXPORT OF THE MODIFIED LEMONTREE COMPONENT

To publish the changes of a LemonTree Component, the content of the working model is expor-
ted. For this purpose (as with the import) a script is used that controls LemonTree Automation.
The MPMS file in the Git repository is overwritten with the export of the LemonTree component
from the working model. The changes are then published via Git Commit and Push.

Figure 8: Release of a modified LemonTree Component in Git

Publishing the change of a LemonTree Component via Git Push on the Git Server triggers a se-
ries of automated actions on a build server.

Whitepaper: Lemon Tree Automation

Example
workflow

BUILD-SERVER PIPELINE

In this document, the term ,build server pipeline” is used as a proxy for various build server
systems and build processes - e.g. Azure DevOps, TeamCity, Jenkins, GitHub Actions. In such a
pipeline, certain actions are defined that are executed in the context of a version control reposi-
tory as soon as a new revision is published in the Git repository (via commit & push). Depending
on the files under version control, different actions are executed.

Figure 9: Build run after committing the MPMS file
In software development, for example, projects are compiled, tested and verified. In the case of
versioned models, validations can also run (e.g. using SQL queries in the Enterprise Architect

model) or a comparison of certain versions is carried out with the help of LemonTree.

Diff and merge operations are suitable for versioning LemonTree components.

AUTOMATED COMPARISON OF LEMONTREE COMPONENTS

To easily track each change, each triggered build run calculates the difference between the
current version and the previous version. Since the trigger of a build run is always the current
commit, the LemonTree Component (MPMS file) of the current commit is available in this con-
text. In addition, the build script fetches the previous version from the Git repository and starts
a comparison with LemonTree Automation. Since LemonTree Automation runs during the build
process and does not provide a user interface, LemonTree Automation creates a so-called ,,sin-
gle file session®“. This artefact contains the compared models or LemonTree components so that
their comparison can be reproduced at any time. This session artefact is published as a result
at the end of the build run and can thus be viewed by anyone with access to the build project.

The LemonTree Single File Session can be
downloaded and opened to see the compa-
rison with the last commit of the LemonTree
Component.

Figure 10: Generated diff session as build artefact

LieberLieber Software

Example
workflow

Figure 11: Diff of a LemonTree Component from LemonTree Single File Session

In addition to automated comparisons, the calculation of possible conflicts in merge operations
is also supported. This is especially necessary when working with a multi-branch strategy (e.g.
with GitFlow).

MERGE PREVIEW OF LEMONTREE COMPONENTS (MULTI-BRANCH STRATEGY)

When working with a multi-branch strategy (e.g. GitFlow), created branches are merged again.
This happens, for example, when a feature is completed or a release is published. However, be-
fore a change is adopted or integrated into a branch, a merge or pull request is first created. This
determines which change is merged into which branch. In order to assess whether a change can
be adopted or released, a review of the changes
from the branch is carried out. In order to better
understand the model changes, a LemonTree
Single File Session is also created in this case.
A comparison between the merge target (e.g.
the develop branch) and the current branch (e.g.
Figure 12: Merge preview artefact feature branch) is calculated.

Whitepaper: Lemon Tree Automation

Example
workflow

This merge artefact shows in a LemonTree session what the final result of the LemonTree com-
ponent would look like after the merge. If a conflict occurs in the context of the merge process,
it cannot be resolved automatically. In this case, a diff session is created and the build process
terminates with an error message.

Figure 13: Failed build due to conflict

If, for example, a feature is completed and a branch is merged, a new version of the component
exists after the rebuild process. In order to integrate this component in the overall context, an
overall model is regularly created or updated in which all existing LemonTree components are
merged.

INTEGRATION INTO AN OVERALL MODEL

The overall model is usually managed at a central location - such as a file share or a database
server. It represents the entirety of all components in certain versions. In order to regularly im-
port updates, the overall model is updated depending on the build processes of the LemonTree
components.

If, for example, a pull request of a component is completed, the changes from the feature branch
are merged back to develop. This merge triggers a new build in the develop branch, which up-
dates the overall model and imports the latest version of the corresponding component. The
result of the build is a LemonTree session for the comparison between the current develop
commit and its predecessor as well as an overall model with the latest state of the LemonTree
component.

The overall model only serves as a source of information or as a reference to check the com-
patibility of the components with each other. The changes to the components are always made
in the respective Git repository, using LemonTree Component, LemonTree Automation and the
generated working model.

LieberLieber Software

DIFFERENT EXPANSION STAGES
OF THE EXAMPLE WORKFLOW

The workflow described above gives an example of how to work with LemonTree Components and
Automation. It shows the current maximum expansion level of LemonTree tools in the context of
a build pipeline. However, it is not absolutely necessary to set up this comprehensive form of the
tool chain. Therefore, we now describe the different expansion stages of the example workflow.
This makes it clear that this way of working can be introduced step by step or according to your
requirements.

The entire sample workflow looks like this:

Figure 14: Overall example workflow

Different

expansion stages

This variant does not work with LemonTree Components, but with an entire Enterprise Architect
model (eap, eapx or geax file). It is suitable for small and medium-sized models and also if there
are no components in a model that are to be managed in their own life cycle.

With this variant, the steps ,Specification of LemonTree Components®, ,,Working with Lemon-
Tree Components in Version Control“ and ,Integration into an Overall Model“ are omitted. The
Diff Sessions and Merge Previews - described in the chapter ,,Build Server Pipeline” - can also
be created with a complete Enterprise Architect model on the Build Server.

Figure 15: Workflow with EA Model under version control

Different

expansion stages

The described workflow is also possible without using LemonTree Automation. However, both
the exchange of LemonTree Components and the comparison of changes become manual acti-
vities. No build server is used and the update of the integration model with all LemonTree Com-
ponents is done manually via the LemonTree Addin.

Figure 16: Manual workflow without Lemon Tree Automation

Different

expansion stages

In this stage, LemonTree Automation is used to create the temporary working model including
the dependent LemonTree Components. In addition, a script is used to extract the modified Le-
monTree Components from the working model in order to publish them in version control. You do
not need a build server and the update of the integration model with all LemonTree Components
is done manually via the LemonTree Addin.

Figure 17: Automated exchange of Lemon Tree Components

Different
expansion stages

LEVEL 3: DIFF / MERGE REPORT ON THE BUILD SERVER

In stage 3, a build server is also used to create automated diff/merge reports. The update of the
integration model with all LemonTree Components is done manually via the LemonTree Addin.

Figure 18: Automated creation of difflmerge reports

LEVEL 4: INTEGRATION INTO A (CENTRAL) OVERALL MODEL

In the highest expansion level (level 4), the integration model is updated automatically. For this,
the central model (e.g. file server or database) is kept up to date via a script and the LemonTree
Component Update by LemonTree Automation. This workflow extension corresponds to the
comprehensive workflow from Figure 14.

Whitepaper: Lemon Tree Automation

Working with LemonTree Automation and LemonTree Compo-
nents enables fine-grained versioning of parts of an overall mo-
del. Familiar processes and tools from the area of Continuous
Integration and DevOps are reused. As a tool, LemonTree Auto-
mation can be seamlessly combined with other common tools
from development in order to take models into account in addi-
tion to code in familiar build processes.

https://www.lieberlieber.com/lemontree/de/automation-2/

https://www.lieberlieber.com/lemontree/de/automation-2/

The Authors

Philipp Kalenda
Senior Consultant

Dr. Konrad Wieland
CEO

Contact us at
welcome@lieberlieber.com

Responsible for

the content:

@ LieberLieber

LieberLieber Software
Handelskai 340, Top 5
1020 Vienna, Austria
+43 662 90600 2017

mailto:welcome%40lieberlieber.com?subject=

