
1

MASTERING VERSIONS
AND VARIANTS

A UNIFIED APPROACH FOR

COMPLEX SYSTEMS ENGINEERING

LieberLieber Software GmbH

Versioning and variant handling are indispensable
in the engineering of complex systems in order to
ensure quality, efficiency and traceability and to
effectively overcome the challenges of complexity
and diversity. Unfortunately, in practice it is usually
the case that either a good versioning concept is
introduced or attempts are made to manage
variants. LieberLieber has now succeeded in
developing an effective solution for version and
variant management.

2 The solution for model versioning and variant management | LieberLieber Software GmbH

Berger et al. stated in the 2019 Dagstuhl Reports that variant handling is particularly important for
software configuration, while software product line engineering requires support for versioning.
However, it has not yet been possible to establish an overarching version and variant manage-
ment system that has proven itself in practice. To solve this problem, LieberLieber proposes a
combination of model versioning and variant management using the tools Enterprise Architect,
LemonTree, Git and pure::variants from PTC. The workflow illustrated shows a solution using these
components:

 Git Feature Branches
 Enterprise Architect model
 pure::variants for the transformation of variants

This description provides an initial insight into the joint handling of versions and variants of a model
artefact. The combination of pure::variants and LemonTree also offers further approaches (integ-
rated LemonTree Merge in pure::variants, LemonTree.Components as variants, etc.), which we will
discuss in more detail in an upcoming white paper.

COMBINING VERSION AND
VARIANT MANAGEMENT
Overall, versioning and variant handling are indispensable in the engineering of complex systems
in order to ensure quality, efficiency and traceability and to effectively overcome the challenges of
complexity and diversity.
While version control is essential for the long-term maintenance and further development of a sys-
tem, variant management enables the further development or updating of existing versions of a
system without jeopardising the integrity of other variants.
If, for example, a product line is developed on a common platform, it must be possible to document
the different versions of the system in parallel and independently of each other. However, if a general
problem is rectified on the platform, it is difficult to roll out this correction consistently to the variants
that have already been further developed.

Figure 1: Variant management using the example of Airbus (Source: LieberLieber)

3 The solution for model versioning and variant management | LieberLieber Software GmbH

In practice, it has been shown that one either introduces a good versioning concept or tries to
manage variants. Berger et.al. stated in the 2019 Dagstuhl Reports that the software configuration
community is regularly confronted with the need to support variants, while software product line
engineering needs support for versioning. They believe that neither community has succeeded
in developing standardised techniques for version and variant management that are effective in
practice.

FEATURE BRANCH APPROACH
FOR MBSE
Inspired by the approach used in software development, LieberLieber has been promoting a
‘feature branch’ based approach for MBSE artefacts for several years.

A model repository is treated similarly to source code and placed under version control, e.g. with
Git. With the help of LemonTree, it is possible to compare and merge versions of the model, recog-
nise conflicts and manage Git branches (Note 2).
To manage the variants, we recommend pure::variants from PTC, which specialises in the defini-
tion of feature models and the derivation (transformation) of variants. The aim is to combine feature
modelling and feature-branch-based MBSE. In this way, variant management can be applied to an
Enterprise Architect model. pure::variants transforms the complete system model into variant mo-
dels, which are subsequently managed, compared and merged in Git with the help of LemonTree.
The next section explains how a system model with the 150% approach is described with pu-
re::variants and versioned via LemonTree and Git. The changes between variant models can be
maintained with LemonTree and feature branches.

Figure 2: LieberLieber relies on a ‘feature branch’ based approach for MBSE artefacts (Source: https://
atyantik.com/coding-smart-with-git-and-gitflow-a-tutorial-for-better-code-management/)

4 The solution for model versioning and variant management | LieberLieber Software GmbH

THE INTERACTION OF
PURE::VARIANTS, LEMONTREE
AND GIT
The central component of the workflow is a Git repository; the different variants can be mapped
with branches. The initial model (150%) contains all variants in combination and is versioned in the
main branch (main). With pure::variants, variant constraints can be added to Enterprise Architect
elements, diagrams, connectors, etc.. These constraints are linked to the so-called feature model
in pure::variants and define which artefacts from the Enterprise Architect belong to which variant.
A pure::variants transformation creates a variant-specific (100%) Enterprise Architect model. The
result of the transformation is added to a new branch and marked there with a Git tag. This tag ser-
ves as a reference for the time at which the variant was derived. In this way, it is possible to further
develop all derived variant models (100%) and the base model (150%) independently of each other
and in parallel. Managing the models in separate Git branches allows independent development.
However, a so-called merge must be carried out for updates between the models. In the 3-way
merge with LemonTree, three models are taken into account for the merge:

 Git tag of the last transformation
 Result of the current transformation
 Status of the current 100% model

The result of this merge is marked again as a Git tag. A selective merge with LemonTree can also
be used to transfer changes between different 100% models or changes from a 100% model to
the base (150%).

Figure 3: The interaction of pure::variant, LemonTree and Git (Source: LieberLieber & PTC)

5

LieberLieber Software GmbH
Gumpendorfer Straße 19
1060 Vienna, Austria
+43 662 90600 2017

Author
Philipp Kalenda
Head of Consultant

Editing
Rüdiger Maier
Public Relations

Contact us at
welcome@lieberlieber.com

Responsible for
the content

SUMMARY
By managing models through branches, Git offers unlimited possibilities
for merging changes between the different versions or variants of a mo-
del. The perfect interaction of the three tools presented here is crucial for
success:

 LemonTree supports the merging of model elements in terms of
 content
 Git manages the branches and versions the model
 pure::variants provides an overview of the feature model with
 variant constraints and performs model transformations

The workflow shown above describes a working method proposed by
LieberLieber that combines existing tools and practices. pure::variants
and LemonTree can also be integrated even more seamlessly. An exam-
ple of this is the direct merging of the Enterprise Architect model du-
ring the transformation or the use of LemonTree.Automation, LemonTree.
Components and pure::variants as an instructor for the composition of
submodels.

Notes:

1) Thorsten Berger, Marsha Chechik, Timo Kehrer, and Manuel Wimmer.
Software Evolution in Time and Space: Unifying Version and Variability
Management (Dagstuhl Seminar 19191). In Dagstuhl Reports, Volume
9, Issue 5, pp. 1-30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik
(2019)
2) https://customers.lieberlieber.com/downloads/WP_final_DE_Sau-
bere-Versionierung.pdf

